nerfbaselines.types¶
- class nerfbaselines.types.CurrentProgress(i: int, total: int, image_i: int, image_total: int)[source]¶
Bases:
object- i: int¶
- image_i: int¶
- image_total: int¶
- total: int¶
- class nerfbaselines.types.Dataset(camera_poses: numpy.ndarray, camera_intrinsics_normalized: numpy.ndarray, camera_distortions: nerfbaselines.distortion.Distortions, image_sizes: numpy.ndarray | None, nears_fars: numpy.ndarray, file_paths: List[str], sampling_mask_paths: List[str] | None = None, file_paths_root: pathlib.Path | None = None, images: numpy.array | None = None, sampling_masks: numpy.array | None = None, points3D_xyz: numpy.ndarray | None = None, points3D_rgb: numpy.ndarray | None = None, metadata: dict | None = <factory>, color_space: Literal['srgb', 'linear'] | None = None)[source]¶
Bases:
object- camera_distortions: Distortions¶
- property camera_intrinsics¶
- camera_intrinsics_normalized: ndarray¶
- camera_poses: ndarray¶
- color_space: Literal['srgb', 'linear'] | None = None¶
- file_paths: List[str]¶
- file_paths_root: Path | None = None¶
- image_sizes: ndarray | None¶
- images: array | None = None¶
- metadata: dict | None¶
- nears_fars: ndarray¶
- points3D_rgb: ndarray | None = None¶
- points3D_xyz: ndarray | None = None¶
- sampling_mask_paths: List[str] | None = None¶
- sampling_masks: array | None = None¶
- class nerfbaselines.types.Method(*args, **kwargs)[source]¶
Bases:
Protocol- abstract property info: MethodInfo¶
Get method defaults for the trainer.
- Returns:
Method info.
- abstract render(poses: ndarray, intrinsics: ndarray, sizes: ndarray, nears_fars: ndarray, distortions: Distortions | None = None, progress_callback: Callable[[CurrentProgress], None] | None = None) Iterable[ndarray][source]¶
Render images.
- Parameters:
poses – Camera poses.
intrinsics – Camera intrinsics.
sizes – Image sizes.
nears_fars – Near and far planes.
distortions – Distortions.
progress_callback – Callback for progress.
- class nerfbaselines.types.MethodInfo(loaded_step: int | None = None, num_iterations: int | None = None, batch_size: int | None = None, eval_batch_size: int | None = None, required_features: FrozenSet[Literal['color', 'points3D_xyz']] = <factory>, supports_undistortion: bool = False)[source]¶
Bases:
object- batch_size: int | None = None¶
- eval_batch_size: int | None = None¶
- loaded_step: int | None = None¶
- num_iterations: int | None = None¶
- required_features: FrozenSet[Literal['color', 'points3D_xyz']]¶
- supports_undistortion: bool = False¶
- class nerfbaselines.types.RayMethod(batch_size, seed: int = 42)[source]¶
Bases:
Method- render(poses: ndarray, intrinsics: ndarray, sizes: ndarray, nears_fars: ndarray, distortions: Distortions | None = None, progress_callback: Callable[[CurrentProgress], None] | None = None) Iterable[ndarray][source]¶
Render images.
- Parameters:
poses – Camera poses.
intrinsics – Camera intrinsics.
sizes – Image sizes.
nears_fars – Near and far planes.
distortions – Distortions.
progress_callback – Callback for progress.
- abstract render_rays(origins: ndarray, directions: ndarray, nears_fars: ndarray)[source]¶
Render rays.
- Parameters:
origins – Ray origins.
directions – Ray directions.
nears_fars – Near and far planes.