nerfbaselines.training¶
- class nerfbaselines.training.MetricsAccumulator(options: Dict[str, Literal['average', 'last', 'sum']] | None = None)[source]¶
Bases:
object
- class nerfbaselines.training.ResourcesUtilizationInfo[source]¶
Bases:
TypedDict
- gpu_memory: int¶
- gpu_name: str¶
- memory: int¶
- class nerfbaselines.training.Trainer(*, train_dataset: ~nerfbaselines._types.Dataset, test_dataset: ~nerfbaselines._types.Dataset | None = None, method: ~nerfbaselines._types.Method, output: str = '.', save_iters: ~nerfbaselines.utils.Indices = ::10000, eval_few_iters: ~nerfbaselines.utils.Indices = 2000::2000, eval_all_iters: ~nerfbaselines.utils.Indices = -1, logger: ~typing.Callable[[str], ~nerfbaselines._types.Logger] | ~nerfbaselines._types.Logger | None = None, generate_output_artifact: bool | None = None, config_overrides: ~typing.Dict[str, ~typing.Any] | None = None, applied_presets: ~typing.FrozenSet[str] | None = None)[source]¶
Bases:
object
- property num_iterations¶
- nerfbaselines.training.build_logger(loggers: FrozenSet[str]) Callable[[str], Logger] [source]¶
Validates the list of loggers and builds a logger object. It returns a lazy function that initializes the logger when called.
- Parameters:
loggers – Set of loggers to use
- Returns:
A function that initializes the logger when called. It takes the output directory as it’s argument
- nerfbaselines.training.eval_all(method: Method, logger: Logger | None, dataset: Dataset, *, output: str, step: int, evaluation_protocol: EvaluationProtocol, split: str, nb_info)[source]¶
- nerfbaselines.training.eval_few(method: Method, logger: Logger, dataset: Dataset, *, split: str, step, evaluation_protocol: EvaluationProtocol)[source]¶
- nerfbaselines.training.get_presets_and_config_overrides(method_spec: MethodSpec, dataset_metadata: Dict, *, presets=None, config_overrides=None)[source]¶
Given a method spec, dataset metadata, and the optional list of presets from the user, this function computes the list of presets that should be applied. The presets are then applied to obtain config_overrides which are merged with the provided config_overrides.
- Parameters:
method_spec – Method spec
dataset_metadata – Dataset metadata
presets – List of presets to apply or a special “@auto” preset that will automatically apply presets based on the dataset metadata
config_overrides – Config overrides to be applied after all presets were processed
- Returns:
List of applied presets, final config overrides
- Return type:
Tuple
- nerfbaselines.training.get_resources_utilization_info(pid: int | None = None) ResourcesUtilizationInfo [source]¶