LLFF
LLFF is a dataset of forward-facing scenes with a small variation in camera pose. NeRF methods usually use NDC-space parametrization for the scene representation.
Authors: Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, Abhishek Kar
Mip-NeRF 360 | 26.59 | 0.846 | 0.168 | 9h 55m 23s | 104.98 GB | |
TensoRF | 26.68
Paper's PSNR: 26.73
|
0.834
Paper's SSIM: 0.839
|
0.202
Paper's LPIPS (VGG): 0.204
|
31m 32s | 20.38 GB |
PSNR
Peak Signal to Noise Ratio. The higher the better.
Mip-NeRF 360 | 24.59 | 27.56 | 31.34 | 28.51 | 19.84 | 19.51 | 33.49 | 27.86 |
TensoRF | 25.08
Paper's PSNR: 25.27
|
28.38
Paper's PSNR: 28.6
|
31.48
Paper's PSNR: 31.36
|
28.33
Paper's PSNR: 28.14
|
20.96
Paper's PSNR: 21.3
|
19.85
Paper's PSNR: 19.87
|
31.86
Paper's PSNR: 32.35
|
27.53
Paper's PSNR: 26.97
|
SSIM
Structural Similarity Index. The higher the better. The implementation matches JAX's SSIM and torchmetrics's SSIM (with default parameters).
Mip-NeRF 360 | 0.820 | 0.867 | 0.900 | 0.909 | 0.721 | 0.660 | 0.965 | 0.927 |
TensoRF | 0.801
Paper's SSIM: 0.814
|
0.860
Paper's SSIM: 0.871
|
0.898
Paper's SSIM: 0.897
|
0.882
Paper's SSIM: 0.877
|
0.730
Paper's SSIM: 0.752
|
0.644
Paper's SSIM: 0.649
|
0.950
Paper's SSIM: 0.952
|
0.909
Paper's SSIM: 0.9
|
LPIPS (VGG)
Learned Perceptual Image Patch Similarity. The lower the better. The implementation uses VGG backbone and matches lpips pip package with checkpoint version 0.1
Mip-NeRF 360 | 0.210 | 0.140 | 0.117 | 0.124 | 0.231 | 0.246 | 0.115 | 0.158 |
TensoRF | 0.246
Paper's LPIPS (VGG): 0.237
|
0.171
Paper's LPIPS (VGG): 0.169
|
0.141
Paper's LPIPS (VGG): 0.148
|
0.180
Paper's LPIPS (VGG): 0.196
|
0.239
Paper's LPIPS (VGG): 0.217
|
0.279
Paper's LPIPS (VGG): 0.278
|
0.159
Paper's LPIPS (VGG): 0.167
|
0.199
Paper's LPIPS (VGG): 0.221
|