SeaThru-NeRF
SeaThru-NeRF dataset contains four underwater forward-facing scenes.
Authors: Deborah Levy, Amit Peleg, Naama Pearl, Dan Rosenbaum, Derya Akkaynak, Tali Treibitz, Simon Korman
Gaussian Splatting | 21.31 | 0.729 | 0.300 | 20m 9s | 6.49 GB | |
Mip-Splatting | 21.33 | 0.730 | 0.304 | 20m 53s | 6.19 GB | |
SeaThru-NeRF | 26.37 | 0.815 | 0.245 | 2h 49m 9s | 127.55 GB |
PSNR
Peak Signal to Noise Ratio. The higher the better.
Gaussian Splatting | 24.15 | 23.68 | 18.86 | 18.54 |
Mip-Splatting | 24.41 | 23.99 | 19.18 | 17.75 |
SeaThru-NeRF | 30.00
Paper's PSNR: 30.48
|
27.82
Paper's PSNR: 27.89
|
25.92 | 21.73
Paper's PSNR: 21.83
|
SSIM
Structural Similarity Index. The higher the better. The implementation matches JAX's SSIM and torchmetrics's SSIM (with default parameters).
Gaussian Splatting | 0.738 | 0.749 | 0.677 | 0.752 |
Mip-Splatting | 0.739 | 0.752 | 0.683 | 0.747 |
SeaThru-NeRF | 0.870
Paper's SSIM: 0.87
|
0.834
Paper's SSIM: 0.83
|
0.787 | 0.768
Paper's SSIM: 0.77
|
LPIPS
Learned Perceptual Image Patch Similarity. The lower the better. The implementation uses AlexNet backbone and matches lpips pip package with checkpoint version 0.1
Gaussian Splatting | 0.318 | 0.250 | 0.390 | 0.242 |
Mip-Splatting | 0.316 | 0.237 | 0.412 | 0.253 |
SeaThru-NeRF | 0.215
Paper's LPIPS: 0.2
|
0.226
Paper's LPIPS: 0.22
|
0.294 | 0.246
Paper's LPIPS: 0.25
|