Tanks and Temples
Tanks and Temples is a benchmark for image-based 3D reconstruction. The benchmark sequences were acquired outside the lab, in realistic conditions. Ground-truth data was captured using an industrial laser scanner. The benchmark includes both outdoor scenes and indoor environments. The dataset is split into three subsets: training, intermediate, and advanced.
COLMAP | 11.92 | 0.436 | 0.606 | 5h 16m 11s | 0.00 MB | |
2D Gaussian Splatting | 21.54 | 0.768 | 0.281 | 15m 47s | 7.23 GB | |
Instant NGP | 21.62 | 0.712 | 0.340 | 4m 27s | 4.13 GB | |
NerfStudio | 22.04 | 0.743 | 0.270 | 19m 27s | 3.74 GB | |
Gaussian Opacity Fields | 22.39 | 0.825 | 0.172 | 41m 21s | 24.07 GB | |
Gaussian Splatting | 23.83 | 0.831 | 0.165 | 13m 48s | 6.95 GB | |
Mip-Splatting | 23.93 | 0.833 | 0.166 | 15m 56s | 7.27 GB | |
Zip-NeRF | 24.63 | 0.840 | 0.131 | 5h 44m 9s | 26.61 GB |
PSNR
Peak Signal to Noise Ratio. The higher the better.
COLMAP | 14.55 | 14.09 | 14.48 | 14.16 | 9.08 | 7.32 | 10.28 | 8.33 | 6.35 | 10.68 | 14.19 | 14.78 | 13.30 | 11.83 | 8.97 | 12.67 | 15.67 | 9.09 | 12.74 | 14.38 | 13.35 |
2D Gaussian Splatting | 22.86 | 23.40 | 18.92 | 21.11 | 16.91 | 19.74 | 24.14 | 26.50 | 23.21 | 18.00 | 22.83 | 21.70 | 21.45 | 16.41 | 25.42
Paper's PSNR: 28.79
2DGS used different data pre-processing and train/test split for Tanks and Temples. It sets specific hyperparameters for each scene which may not be suitable with the public Tanks and Temples released by NerfBaselines. The results are not directly comparable and a hyperparameter tuning is needed to improve the results. |
22.24
Paper's PSNR: 24.23
2DGS used different data pre-processing and train/test split for Tanks and Temples. It sets specific hyperparameters for each scene which may not be suitable with the public Tanks and Temples released by NerfBaselines. The results are not directly comparable and a hyperparameter tuning is needed to improve the results. |
18.50 | 19.48
Paper's PSNR: 23.51
2DGS used different data pre-processing and train/test split for Tanks and Temples. It sets specific hyperparameters for each scene which may not be suitable with the public Tanks and Temples released by NerfBaselines. The results are not directly comparable and a hyperparameter tuning is needed to improve the results. |
21.34
Paper's PSNR: 23.82
2DGS used different data pre-processing and train/test split for Tanks and Temples. It sets specific hyperparameters for each scene which may not be suitable with the public Tanks and Temples released by NerfBaselines. The results are not directly comparable and a hyperparameter tuning is needed to improve the results. |
24.26
Paper's PSNR: 26.15
2DGS used different data pre-processing and train/test split for Tanks and Temples. It sets specific hyperparameters for each scene which may not be suitable with the public Tanks and Temples released by NerfBaselines. The results are not directly comparable and a hyperparameter tuning is needed to improve the results. |
23.83
Paper's PSNR: 26.85
2DGS used different data pre-processing and train/test split for Tanks and Temples. It sets specific hyperparameters for each scene which may not be suitable with the public Tanks and Temples released by NerfBaselines. The results are not directly comparable and a hyperparameter tuning is needed to improve the results. |
Instant NGP | 20.67 | 21.62 | 19.44 | 15.19 | 19.09 | 17.84 | 22.59 | 24.38 | 21.82 | 21.65 | 25.82 | 26.81 | 23.33 | 20.01 | 25.90 | 21.72 | 19.92 | 20.80 | 19.40 | 23.24 | 22.85 |
NerfStudio | 20.77 | 22.68 | 20.24 | 17.84 | 17.68 | 17.06 | 24.32 | 24.60 | 24.31 | 20.85 | 26.54 | 27.57 | 24.69 | 20.43 | 26.40 | 21.71 | 20.06 | 18.11 | 20.44 | 23.21 | 23.37 |
Gaussian Opacity Fields | 23.20 | 22.84 | 21.15 | 19.92 | 16.46 | 20.29 | 22.31 | 24.76 | 23.73 | 21.80 | 28.04 | 28.47 | 23.89 | 19.69 | 25.72 | 21.78 | 19.65 | 19.60 | 20.34 | 24.31 | 22.33 |
Gaussian Splatting | 24.13 | 24.07 | 23.12 | 20.92 | 19.63 | 20.85 | 24.43 | 27.22 | 23.82 | 22.11 | 27.84 | 28.32 | 25.37 | 21.67 | 27.51 | 23.38 | 22.79 | 22.22 | 21.53 | 25.19 | 24.25 |
Mip-Splatting | 24.41 | 24.15 | 23.00 | 20.88 | 19.63 | 20.55 | 24.55 | 27.61 | 23.94 | 22.25 | 27.98 | 28.27 | 25.87 | 21.82 | 27.75 | 23.42 | 22.76 | 22.15 | 21.73 | 25.46 | 24.36 |
Zip-NeRF | 24.52 | 25.45 | 22.17 | 19.34 | 19.11 | 20.58 | 27.10 | 29.10 | 26.82 | 23.07 | 29.01 | 28.76 | 27.13 | 22.19 | 29.26 | 23.94 | 23.14 | 22.88 | 22.61 | 25.93 | 25.09 |
SSIM
Structural Similarity Index. The higher the better. The implementation matches JAX's SSIM and torchmetrics's SSIM (with default parameters).
COLMAP | 0.390 | 0.408 | 0.371 | 0.418 | 0.407 | 0.408 | 0.440 | 0.302 | 0.404 | 0.514 | 0.547 | 0.594 | 0.455 | 0.396 | 0.479 | 0.376 | 0.425 | 0.397 | 0.400 | 0.509 | 0.507 |
2D Gaussian Splatting | 0.835 | 0.808 | 0.660 | 0.764 | 0.668 | 0.763 | 0.854 | 0.884 | 0.867 | 0.707 | 0.825 | 0.771 | 0.745 | 0.583 | 0.816 | 0.761 | 0.658 | 0.707 | 0.762 | 0.849 | 0.843 |
Instant NGP | 0.761 | 0.652 | 0.640 | 0.471 | 0.668 | 0.689 | 0.761 | 0.824 | 0.784 | 0.765 | 0.832 | 0.844 | 0.696 | 0.658 | 0.772 | 0.633 | 0.650 | 0.681 | 0.613 | 0.783 | 0.770 |
NerfStudio | 0.771 | 0.705 | 0.673 | 0.648 | 0.640 | 0.678 | 0.822 | 0.851 | 0.847 | 0.768 | 0.843 | 0.858 | 0.755 | 0.693 | 0.794 | 0.666 | 0.671 | 0.632 | 0.689 | 0.793 | 0.797 |
Gaussian Opacity Fields | 0.871 | 0.818 | 0.781 | 0.761 | 0.683 | 0.794 | 0.875 | 0.901 | 0.881 | 0.833 | 0.906 | 0.910 | 0.869 | 0.796 | 0.866 | 0.791 | 0.775 | 0.726 | 0.769 | 0.862 | 0.860 |
Gaussian Splatting | 0.871 | 0.824 | 0.790 | 0.764 | 0.736 | 0.806 | 0.865 | 0.897 | 0.875 | 0.843 | 0.901 | 0.908 | 0.848 | 0.791 | 0.852 | 0.791 | 0.811 | 0.779 | 0.776 | 0.866 | 0.853 |
Mip-Splatting | 0.872 | 0.826 | 0.791 | 0.768 | 0.731 | 0.805 | 0.872 | 0.899 | 0.879 | 0.844 | 0.904 | 0.908 | 0.861 | 0.795 | 0.855 | 0.790 | 0.812 | 0.779 | 0.780 | 0.870 | 0.857 |
Zip-NeRF | 0.877 | 0.835 | 0.790 | 0.746 | 0.718 | 0.805 | 0.889 | 0.915 | 0.897 | 0.849 | 0.912 | 0.909 | 0.880 | 0.814 | 0.884 | 0.802 | 0.807 | 0.780 | 0.789 | 0.875 | 0.864 |
LPIPS
Learned Perceptual Image Patch Similarity. The lower the better. The implementation uses AlexNet backbone and matches lpips pip package with checkpoint version 0.1
COLMAP | 0.637 | 0.466 | 0.537 | 0.495 | 0.784 | 0.617 | 0.550 | 0.686 | 0.563 | 0.665 | 0.550 | 0.524 | 0.615 | 0.813 | 0.520 | 0.771 | 0.514 | 0.737 | 0.551 | 0.591 | 0.545 |
2D Gaussian Splatting | 0.304 | 0.120 | 0.422 | 0.170 | 0.512 | 0.305 | 0.111 | 0.202 | 0.122 | 0.438 | 0.249 | 0.358 | 0.316 | 0.529 | 0.213 | 0.227 | 0.443 | 0.398 | 0.176 | 0.168 | 0.123 |
Instant NGP | 0.429 | 0.352 | 0.448 | 0.606 | 0.440 | 0.424 | 0.235 | 0.265 | 0.225 | 0.281 | 0.202 | 0.208 | 0.344 | 0.334 | 0.271 | 0.360 | 0.419 | 0.414 | 0.343 | 0.326 | 0.216 |
NerfStudio | 0.330 | 0.261 | 0.336 | 0.311 | 0.452 | 0.392 | 0.158 | 0.190 | 0.139 | 0.245 | 0.179 | 0.174 | 0.249 | 0.261 | 0.215 | 0.302 | 0.338 | 0.465 | 0.251 | 0.261 | 0.167 |
Gaussian Opacity Fields | 0.194 | 0.107 | 0.168 | 0.152 | 0.443 | 0.234 | 0.084 | 0.158 | 0.092 | 0.181 | 0.104 | 0.102 | 0.142 | 0.164 | 0.140 | 0.187 | 0.208 | 0.346 | 0.162 | 0.140 | 0.099 |
Gaussian Splatting | 0.193 | 0.101 | 0.165 | 0.160 | 0.350 | 0.222 | 0.095 | 0.169 | 0.103 | 0.156 | 0.113 | 0.107 | 0.170 | 0.171 | 0.160 | 0.190 | 0.177 | 0.266 | 0.153 | 0.141 | 0.108 |
Mip-Splatting | 0.196 | 0.098 | 0.165 | 0.158 | 0.354 | 0.226 | 0.095 | 0.172 | 0.104 | 0.159 | 0.112 | 0.109 | 0.155 | 0.172 | 0.161 | 0.197 | 0.176 | 0.265 | 0.159 | 0.137 | 0.108 |
Zip-NeRF | 0.153 | 0.113 | 0.153 | 0.159 | 0.317 | 0.183 | 0.067 | 0.106 | 0.069 | 0.131 | 0.076 | 0.081 | 0.095 | 0.119 | 0.083 | 0.152 | 0.153 | 0.218 | 0.127 | 0.121 | 0.081 |